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ABSTRACT

Background: A developing branch of study that focuses on the genetic investigation of the pharmacogenes 

responsible for drug metabolism is known as pharmacogenetics. 

Objective: This review, focused on how drug metabolism and new pharmacogenetic testing interact. 

Methods: A search of existing literature specifically concerned with the use of knowledge gained from the study 

of gene variations in selected drug metabolising enzymes to direct the use of drugs and associated therapies was 

carried out. This was with the view of further research in this rapidly developing subject that will help us move 

away from the "one size fits all" approach to prescribing and improve our knowledge of the factors that influence 

individual differences in drug disposition and, ultimately, the efficacy or toxicity of medication responses. 

Results: Along with improved therapeutic efficacy and public health, potential advantages would include the 

achievement of better customized prescribing, better patient outcomes in study populations, and more. 

Conclusion: This is done to usher in the new era of medical genetics, also known as genetic medicine, which 

encompasses fields like personalized medicine, gene therapy, and the rapidly developing medical specialty known 

as predictive medicine. 

Keywords: Pharmacogenetics, drug-metabolism, cytochrome P450, genetic polymorphism, genotype tests, 

personalized medicine. 
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RÉSUMÉ 

Contexte : La pharmacogénétique est une branche d'étude en développement qui se concentre sur l'étude 

génétique des pharmacogènes responsables du métabolisme des médicaments. 

Objectif : Cette étude s'intéresse à l'interaction entre le métabolisme des médicaments et le nouvel essai 

pharmacogénétique. 

Méthode : Cette étude fait une recherche dans la documentation actuelle qui s'intéresse spécifiquement à 

l'utilisation des connaissances acquises par l'étude des variations génétiques dans les enzymes métabolisant des 

médicaments sélectionnés pour orienter l'utilisation des médicaments et des thérapies associées. Cette étude 

poursuit les recherches sur ce sujet en plein essor qui nous aidera à nous éloigner de l'approche " taille unique " de 

la prescription et améliorer notre connaissance des facteurs qui influencent les différences individuelles dans la 

disposition des médicaments et, en fin de compte, l'efficacité ou la toxicité des réponses aux médicaments.

Résultats : Outre l'amélioration de l'efficacité thérapeutique et de la santé publique, les avantages potentiels 

incluraient la réalisation d'une prescription mieux adaptée, de meilleurs résultats pour les patients dans les 

populations étudiées, et bien plus encore. 

Conclusion : Il s'agit d'ouvrir la nouvelle ère de la génétique médicale, également connue sous le nom de 

médecine génétique, qui englobe des domaines tels que la médecine personnalisée, la thérapie génique et une 

spécialité médicale en plein essor, connue sous le nom de médecine prédictive.

Mots-clés : Pharmacogénétique, Métabolisme des médicaments, Cytochrome P450, Polymorphisme génétique, 

Tests génotypiques, Médecine personnalisée.
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INTRODUCTION

Pharmacogenetics and pharmacogenomics - definitions 

and explanations

Pharmacogenetics, or the study of how genetic variants 

i m p a c t  a  d r u g ' s  p h a r m a c o k i n e t i c s  a n d  

pharmacodynamic responses-is, the interaction 

between a medicine and a person's characteristics-is the 

science of genetic variations in drug pharmacology. In 

other words, it investigates the relationship between a 

person's genotype and their capacity to metabolize a 

foreign substance because of variations brought about 
1,2by their specific genetic make-up.  In 1914, Archibald 

Garrod was the first to link a person's unexpected 

medication responses to an inability of their enzymes to 

d e t o x i f y  f o r e i g n  c o m p o u n d s ,  l a u n c h i n g  
3,4 pharmacogenetics as an experimental science. Werner 

Kalow also proved heredity as a spectacular result of an 
5unanticipated response to medications in 1962.  Genetic 

polymorphisms in the targets of drug therapy (such as 

receptors), inherited differences in drug metabolism and 
6,7disposition,  individual differences in age, race, organ 

function, concurrent therapy, drug interactions, and 

concurrent illnesses are some of the causes of variation 

in an individual's response to xenobiotics, including 
8,9 pharmaceuticals.

The term "pharmacogenetics" emerged to describe the 

area of study that focuses on the genetic examination of 
5the proteins involved in drug metabolism.  

Pharmacogenetics is specifically concerned with the use 

of knowledge gained from the study of gene variations to 

direct the use of drugs and associated therapies. Two 

functional component branches of this field link genetics 

and medicines. These are the pharmacodynamics arm 

(how medications interact with receptors to produce an 

expected reaction) and the pharmacokinetics arm 

(which forecasts how drugs are metabolized by the 

body). Typically, the biotransformation of medicines by 

metabolic processes and their subsequent disposal via 

renal function are closely related to pharmacokinetics. 

On the other hand, pharmacodynamics focuses on 

comprehending how medications interact with receptors 

and the ensuing reaction, even though there may also be 

some biotransformation involved. Emerging fields like 

pharmacogenetics and pharmacogenomics concentrate 

on the genetic factors that influence medication 

response at the level of individual genes or the complete 

human genome, respectively. Currently, technologies 

using gene chip arrays can identify hundreds of 

differences in a patient's DNA sequence, the majority of 

which are single nucleotide polymorphisms. 

Pharmacogenomics seeks to create a profile of DNA 

sequence variations that are unique to each patient to 

assess illness risk and choose the best pharmacological 

therapy. This strategy has the potential to transform 
10disease prevention and treatment  using the concept of 

pharmacogenetic testing. 

Pharmacogenetic testing

Thus, pharmacogenetic testing-a relatively new area of 

clinical and pharmacy practice, particularly in Nigeria-will 

help in predicting drug concentration or response; 

achieve better individualized prescribing; improve 

patient outcomes in the study population; improve 
11,12therapeutic efficiency and public health.  When it 

comes to the metabolism of antimalarial medications, 

genetic polymorphism is induced by several factors that 

influence the pharmacokinetics of antimalarial drugs, 

making this area of pharmacogenetics particularly 

crucial. This resulted from the discovery of genetic 

variabil ity in the human metabolism of the 
13anticonvulsant medication mephenytoin.  Individuals 

can be characterized phenotypically as extensive 

metabolizers (EMs) or poor metabolizers (PMs) of this 

drug. The enzyme responsible for this polymorphism has 
14,15been identified as CYP2C19.  Variant alleles of the 

human cytochrome P-450 2C19 (CYP2C19; S-

mephenytoin hydroxylase) gene have been shown to 

correlate with the rate at which several antimalarial 

medications are metabolized. In laboratory medicine, the 

idea of pharmacogenetic testing is typically related to 

predicting the biotransformation of a drug by identifying 

genetic variants that regulate elements of therapeutic 

response. Pharmacogenetic testing has several benefits, 

including better prognostication, more accurate 

diagnosis, identification of clinically distinct patient 

subsets, easier design of clinical trials, improvement of 

specificity and safety of current treatments, and 

identification of disease-defining signaling pathways that 
16result in "druggable" targets.  Antidepressants, 

antipsychotics, warfarin, irinotecan, and tamoxifen 

prescriptions can now be tested for. There are additional 

tests planned for beta blockers, anticancer treatments, 

asthma medications, anti-hyperglycaemics, and 

hypertensives. (www.healthscopemolecular.com/ 

pharmacogenomics). Existing pharmacogenetic tests or 

genotype tests for CYP2C9 & VKORC1, CYP2C19, CYP2D6, 
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and TPMT have been prepared on the basis and 

recommendations of guidelines from various bodies and 
17societies.  These bodies include the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) 

guideline under the National Institutes of Health's 

Pharmacogenomics Research Network (NIH PGRN), the 

Dutch Pharmacogenetics Working Group (DPWG) 
18guideline,  and the Laboratory Analysis and Application 

of Pharmacogenetics to Clinical Practice of the National 
19Academy of Clinical Biochemistry (NACB).  Other 

available genotype tests include NAT2 genotype tests for 

isoniazid, KRAS genotype tests for thiopurine family 

drugs (azathioprine, mercaptopurine, and thioguanine), 

HER2 (ERBB2) genotype tests for breast cancer, and EGFR 
17genotype tests for non-small-cell lung cancer.  A list of 

20some available tests is found in Table 1.        

Table 1: Sample information for some of the currently available tests
 

Test                           Code               Sample Type                             Test Frequency  

CYP2C9/VKORC1                        4mL EDTA blood                       Three times/week 

 
CYP2C19                 2C19             4mL EDTA blood                       Three times/week 
Genotyping 

 
CYP2D6                   2D6               4mL EDTA blood                      Three times/week 
Genotyping 

Variation in DNA - basis for genetic polymorphism
21Venter et al.  it was who reported from a genome 

analysis that since we all share at least 99.9% of the 
nucleotide code in our genome, less than 0.1% of DNA 
variation accounts for human genetic variability. Patients 
exhibit varying responses to the environment, differing 
pharmacokinetics, and predisposition to various 

22,23situations in clinical and pharmacy practice.  Hence, 
they vary regarding dose-response relationships for 
common drugs and have a range of susceptibilities to 
adverse effects of therapeutic agents even in the absence 
of obvious variability in individual pharmacokinetics or 

24biochemical pharmacology.  Numerous forms of 
variation are present in genes encoding drug-
metabolizing enzymes, the most prevalent being single 

25nucleotide polymorphisms (SNPs).  An SNP is defined as 
a difference in a single base pair in an individual's DNA, 
which occurs when one purine or pyrimidine nucleotide is 
swapped out for another at a specific place in a DNA 
strand. These can be used to map and pinpoint genes 
linked to several illnesses, including diabetes, cancer, and 
arthritis. SNPs exist for many of these genes and are 
typically biallelic (i.e., involve only 2 choices at a given site 
within a population). Variant or polymorphism refers to a 
substitution that is seen in more than 1% of a specific 
target group but does not manifest any aberrant 

26phenotype.  When the protein-coding is unaltered, 

single-nucleotide polymorphisms can be neutral or 
change an encoded amino acid or have no effect on gene 

27function.  Many of the proteins that these genes encode 
could end up becoming potential therapeutic targets. On 
the other hand, a mutation is described as a change in 
DNA (DNA variant) that happens infrequently, is 
frequently linked to disease, and may have an impact on 
phenotypic. Some polymorphisms in genes encoding 
drug-metabolizing enzymes have been described, though 
the pharmacogenetic significance of most of these 
variants is sti l l  not fully understood. These 
polymorphisms may alter enzyme function through 
changes in gene expression or active-site binding, protein 

28truncation, or yet-to-be-described mechanisms.  
Variability in the human genome is one of the main 
reasons why people respond differently to medicines and 
other xenobiotics. Genetic variation influences nearly 
every disease vulnerability to some extent and have a 
substantial clinical impact on drug metabolism. 
Additionally, genetic variation can affect receptors such 
as   adrenoceptors, one of which is amplified by 
salbutamol and results in inadequate control of wheezing 
and gasping in asthmatics. Others are the 5-HT2A-
serotonergic receptor and HER2. Multiple drug resistance 
transporters are impacted by genetic differences in 
transporters, which results in phenotypic overexpression 
in cancer and drug resistance to vinblastine, doxorubicin, 

β2 
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paclitaxel, etc. 

Pharmacogenetics and drug metabolism
8Drug metabolism  was the initial emphasis of the area of 

pharmacogenetics, but it has since expanded to cover 
the complete range of drug disposition, drug 
transporters that affect drug absorption, distribution, 

7,29-30excretion, and drug targets.  Drug metabolizing 
enzymes (CYP450), which are largely found in the liver, 
play a significant role in determining the therapeutic 
efficacy of a drug. Instead of being hydrophilic and polar, 
the majority of orally taken medications are fat soluble 
and non-polar. After absorption, lipophilic medications 
go through two-stage biotransformation in the liver. In 
phase I, they are changed into active or inactive 
metabolites. However, many medicines and their active 
metabolites go through second biotransformation 
(phase II) to make them polar and hydrophilic because 
excretion ultimately depends on water solubility in urine 
or faeces. On the other hand, very hydrophilic 
medications frequently avoid hepatic metabolism and 
remain mostly unaltered when eliminated in urine. Many 
medications taken orally are pro-drugs, exerting their full 
or nearly full pharmacologic impact only on their 
conversion to active metabolites (e.g., proguanil 
hydrochloride to cycloguanil) and the less potent 
metabolite 4-chlorophenyl biguanide. The metabolism of 
drugs in humans is carried out by more than 30 families of 

31,32enzyme complexes.  and these all have been found to 
exhibit genetic variation; many of which translate into 

9functional changes in the respective proteins encoded.  
These drug-metabolizing enzymes are categorized as 
catalyzing either phase I (oxidation, reduction, and 
hydrolysis) or phase II (conjugation, acetylation, 
glucuronidation, sulphation, and methylation) reactions. 
They work to transform relatively lipid-soluble 
substances into water-soluble metabolites that are easily 
excreted. The cytochrome P450 microsomal enzymes, a 
group of heme-containing proteins that catalyze the 
transformation of lipophilic compounds into hydrophilic 
molecules that can ultimately be eliminated by kidneys in 
urine, catalyze the majority of significant phase I 
processes. It represents a major part of the body's 
powerful detoxification systems localized primarily in 

33hepatocytes but also in the intestines.  The cytochrome 
P450 system undergoes several processes, such as 
epoxidation, N-dealkylation, O-dealkylation, S-oxidation, 
and hydroxylation, to metabolize both endogenous and 
foreign substrates. 

Cytochrome P450 and genetic polymorphism
Humans have a multigene family of drug-metabolizing 

enzymes called cytochrome P450s (CYP450), which are 
primarily present in the liver and oversee the metabolic 
elimination of most pharmaceuticals now utilized in 

34medicine.  They are members of a family of isozymes 
that are found in the endoplasmic reticulum and are 
i nvo l ve d  i n  t h e  ox i d at i ve  m eta b o l i s m  a n d  
biotransformation of drugs. They are crucial for the 
biosynthesis and breakdown of many endogenous 
substances, including those with still-unknown functions 
like drugs, foreign substances, arachidonic acid, and 
eicosanoids. They also play a crucial role in the 
metabolism of cholesterol and bile acids, steroid 
synthesis and metabolism, vitamin D3 synthesis and 
metabolism, steroid biosynthesis, and steroid 
metabolism. Mutations in many CYP genes cause inborn 
errors of metabolism and contribute to many clinically 
relevant diseases. The human genome thus contains 18 
CYP families, divided into 41 protein-coding subfamilies 

35encoding 57 genes,  but only a relatively small number of 
the encoded proteins, mainly in the CYP1 (A1, A2, B1), 
CYP2 (A6, A13, B6, C8, C9, C19, D6, E1, F1, J2, R1, S1, W1), 
and CYP3 (A4, A5, A7, and A43) families, appear to 
contribute to the metabolism of drugs. The CYP 4 family 
has also been reported as part of the PharmVar Genes 
(https://www.pharmvar.org/genes).  More than half of all 
medications are largely cleared by the cytochrome p450 
mixed-function mono-oxygenase system, which is likely 
the most significant component of phase I metabolism in 
mammals. These enzymes are sometimes referred to as 
drug-metabolizing enzymes (DME), and several variables, 
including age, food, concurrent drugs, and genetic 
variability, affect how active they are. Between 20 and 
200 medications are thought to oxidize cytochrome P450 
isozymes. 

Only 6 isoforms catalyze the oxidative metabolism of 
most drugs in common use: CYP1A2, CYP3A4, CYP2C9, 
CYP2C19, CYP2D6, and CYP2E1.36 Of these six isozymes, 
the CYP3A4 isozyme's common metabolism has led to 
several clinically relevant drug-drug interactions. 
Particularly, CYP3A, CYP2D6, and CYP2C19 are those 
responsible for over 50% of the overall clearance of 
regularly used medications and around 80% of oxidative 
drug metabolism.  Although there may be significant 
overlap, each cytochrome P-450 enzyme has a distinct 
substrate specificity that is frequently to a specific area of 
a drug molecule, to a specific enantiomer (such as for S-
mephenytoin), or both. As a result, one cytochrome P-450 
enzyme may be substantially in charge of the entire 
oxidative metabolism of a certain drug, or several 
cytochrome P-450 enzymes may each contribute. The 
liver is the predominant site of cytochrome P-450-
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mediated metabolism, but the enterocytes in the 
37epithelium may contribute.  While some medications 

are substrates for multiple enzymes, others are 
substrates for just one. The medications that are most 
likely to be engaged in clinically significant drug 
interactions are those that have long-lasting effects by 
acting on enzymes that metabolize other substrates. 
Every cytochrome P450 isozyme has a unique gene that 
codes for it, and the P450 gene superfamily is divided into 
families and sub-families according to how closely related 
its isozymes are to one another in terms of amino acids. 
Cytochrome P-450 enzymes reduce or alter the 
pharmacologic activity of many drugs and facilitate their 
elimination. Individual cytochrome P-450 enzymes are 

33,38classified by their amino acid similarities  and are 
designated with Arabic numerals by a family number, a 
subfamily capital letter, a number for an individual 
enzyme within the subfamily, and an asterisk followed by 
a number and a letter for each genetic (allelic) variant 
e.g., CYP2C19 (www.cypalleles.ki.se).

Mechanisms for cytochrome P450-mediated drug 
interactions
The two main mechanisms behind cytochrome P450-
mediated drug interactions are induction and potent 
inhibition. Increased production or decreased 
degradation of cytochrome P450 enzymes are referred to 
as induction; these effects promote conversion to 
inactive metabolites. Therefore, induction causes a drop 
in the substrate's plasma levels as well as the 
pharmacodynamic impact. Either enzyme inactivation or 
reciprocal competition between substrates for a catalytic 
site is considered a form of inhibition. Both responses 
have the same overall result of slowing down drug 
metabolism, which lengthens the half-life of the affected 
medication or active metabolite and intensifies its 
pharmacologic (or toxic) effect. Examples of inhibitors 
include cimetidine and fluconazole, whereas rifampicin 
functions as an inducer. It has been suggested that 
variations in the activity of these enzymes are responsible 
for the inter-individual diversity in drug responsiveness 
and toxicity. A detailed cytochrome P450 "Clinically 
Relevant" Drug Interaction Table for substrates, 
inhibitors, inducers, and genetics for the CYP 450 
enzymes 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5 
and 3A7 can be assessed at the clinical pharmacology 
home page of the Department of Medicine, Indiana 
University (http://medicine.iupui.edu). While the 
frequency of mutant alleles of CYP3A, 2D6, 2C9, and 2C19 
has been studied in all major human races, scanty or no 
data are available for Nigerians. 

Cytochrome P450 CYP3A and drug metabolism
The CYP3A family of cytochrome P-450 enzymes 
together describe metabolism that is mostly carried out 
by two enzymes, CYP3A4 and, to a lesser extent, CYP3A5, 
whose substrate specificities are so close that they 
cannot be easily identified. Although Cytochrome P450 
3A4 (CYP3A4) is the most prevalent and important drug-
metabolizing enzyme among the Cytochrome P450s, no 

38homozygous inactive variation has been identified yet.   
However, 37 variant alleles of the CYP3A family have 

39-been identified to date (i.e., CYP3A4*1 to CYP3A4*37).
42 https://www.pharmvar.org/gene/ CYP3A4). CYP3A4 
undergoes extensive metabolism in the intestinal 
mucosa and the liver which contributes to the low oral 

33bioavailability of many drugs.   The CYP3A activity may 
be reduced by drug interactions through inhibition, or it 
may increase metabolic activity through an induction 
which can expand the range of variability to about 400-

43,44fold.   As demonstrated by the reported interaction 
between erythromycin, a medication that is substantially 
metabolized by CYP3A, and inhibitory medications such 
nitroimidazole antifungal medicines, diltiazem, and 
verapamil, among others, the problem of drug 
interactions can be problematic. A patient using both 
erythromycin and one of the inhibitors may have an 
increase in erythromycin levels. Because erythromycin 
prolongs cardiac repolarization, unexpected death could 

45result.  When CYP3A is inhibited, an oral medication 
that undergoes significant first-pass metabolism may 
have its bioavailability multiplied. Other powerful CYP3A 
inhibitors are known to raise the plasma concentrations 
of medicines processed by CYP3A enzymes even when 
administered at standard doses. Unless the dosage is 
changed, adverse consequences are predictable. 
However, medications that block CYP3A activity can 
occasionally be used with other protease inhibitors to 
treat HIV type 1 infection. This is the case with ritonavir, 
which is the basis for this strategy. Certain inhibitors of 
the HIV-encoded protease have a greatly reduced first-
pass metabolism when administered with ritonavir, and 
their plasma levels have significantly increased as a 
result. Following the discontinuation of the interfering 
medication, a reversible CYP3A inhibition is often seen 
within two to three days. However, because CYP3A is 
destroyed and a new CYP3A enzyme must be produced, 
the impact may continue significantly longer in the case 
of inhibitors, including diltiazem, macrolide antibiotics, 

43mifepristone, and delavirdine.  Tacrolimus is a substrate 
39for CYP3A4  and its co-administration with CYP3A4 

inhibitors such as diltiazem causes clinically significant 
toxicity while CYP3A4 inducers like carbamazepine 
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reduce tacrolimus concentrations. Grapefruit juice as a 
non-drug, inhibiting CYP3A4 increases the

46concentrations of many drugs.    

Cytochrome P450 CYP2C subfamily and Genetic
Polymorphism
 Four members of this family: CYP2C8, CYP2C9, CYP2C18, 
and CYP2C19 have been described. They are encoded by 
four highly homologous genes on chromosome 10, each 
isoform having very distinctive substrate specificity that 
subjects them to individual consideration of their 

47polymorphic consequences.  The cytochrome P450 2C 
subfamily is also a key player in the generation of 
epoxyeicosatrienoic acids (EET acids) and CYP2C9 and 
CYP2C19 are the major CYP2C involved in 8, 9-EET, 

48production  (a major CYP450 metabolite in the renal 
49cortex)  that has anti-inflammatory properties.

Cytochrome P450 CYP2C8
CYP2C8 officially named cytochrome P450 family 2 
subfamily C member 8, is exhibited as the wild-type allele 
in addition to at least three variant alleles with 

50-52nonsynonymous base substitutions.  It was one of the 
first human cytochromes P450 with a drug metabolic 

53function to be cloned.  About eighteen variant alleles of 
54CYP2C8 have been identified.

(https://www.pharmvar.org/gene /CYP2C8). Substrates 
for CYP2C8 with large interindividual differences in its 
enzymatic activity include anticancer drug paclitaxel, all-
trans retinoic acid, arachidonic acid, cerivastatin, 
rosiglitazone, zopiclone, and the antimalarial drug 

52,55amodiaquine.  However, its inhibitors include 
gemfibrozil and ketoconazole. The variant alleles, 
CYP2C8*2, CYP2C8*3, and CYP2C8*4 are associated with 
decreased activity when paclitaxel was used as substrate 

56in comparison with the wild-type allele.  CYP2C8*2, 
CYP2C8*3, and CYP2C8*4 occur at a frequency of very 
rare, 0.13 and 0.075 in Europeans; but at 0.18, 0.02, and 

57very rare respectively in African Americans.  Other 
54variant alleles are CYP2C8*5 to CYP2C8*18.  However, 

work is ongoing on the systematic collection of the 
CYP2C8 allele frequencies and the systematic curation of 
the function of CYP2C8 alleles by the Clinical 
Pharmacogenetics Implementation Consortium (CPIC) 
(https://www.pharmvar.org/gene/CYP2C8). 

Cytochrome P450 CYP2C9
Several clinically significant medicinal medicines are 
metabolized by the enzyme CYP2C9, which has been 
shown to have several single nucleotide polymorphisms. 
Non-steroidal anti-inflammatory drugs (NSAIDs i.e., 

"profens"), phenytoin, sulfonylureas, and warfarin are 
substrates for CYP2C9, while fluconazole and 
sulphaphenazole are inhibitors. The pharmacokinetics 
and pharmacodynamics of many therapeutic 
medications are greatly influenced by CYP2C9 in this 
function, which may lead to negative pharmacological 
effects and therapeutic failure. In a bacterial cDNA 
expression system, their allelic expression revealed that 

58,59 multiple alleles had changed catalytic activity.
Although CYP2C9 allele distribution varies by ethnicity, 
the overall frequency of variant alleles in the general 

60-62population appears to be around 30%.  Each of the 
two most prevalent variant CYP2C9 alleles (CYP2C9*2 
and CYP2C9*3) is known to be at least as common in a 
r a n g e  o f  C a u c a s i a n  g r o u p s  a s  t h e  H F E  
(hemochromatosis) gene mutation that results in the 

60,61,63substitution C282Y.  The HFE gene has two 
common mutations, C282Y and H63D which can be 
revealed by genetic testing. However, heterozygosity for 
mutant CYP2C9 alleles has been linked to discernible 
changes in clinical phenotype, unlike C282Y. Higashi et 

60al.  have shown longer time to correct dose (to 
administer the correct amount), and increased 
frequency of bleeding events. A correlation with 
changed dosing requirements has been shown in a few 

61,62,64 studies. a Swedish population, it was discovered 
that 29% of the variation in the maintenance warfarin 
dose can be linked to the CYP2C9 genotype. Hillman et 

61al.  found that a gene-based multivariate model with 
clinical variables could account for 34% of the variance 
(for example, age, gender, and body size). The functional 
effects of the CYP2C9*5, CYP2C98*6, CYP2C9*8, and 
CYP2C9*11 polymorphisms were also examined in vivo 
among black Africans, where 19 Beninese participants 

65received a single oral dose of losartan (25 mg).  They 
concluded that, in contrast to the wild-type variant, the 
CYP2C9*5 and CYP2C9*6 alleles are linked to lower 
enzyme activity in vivo, whereas the CYP2C9*8 and *11 
variants did not seem to have significant in vivo 

65impacts.  The warfarin-CYP2C9 relationship represents 
a well-characterized example of single DME 
polymorphism predisposing patients to the 
development of a clinically recognizable alteration in 

60,61,66 phenotype. The limited therapeutic index of 
warfarin is responsible for the phenotypic penetrance of 
this association. It is advised that CYP2C9 and VKORC1 
genotype tests be carried out to ensure that warfarin is 

17dosed properly for each patient.  About eighty-five 
variant alleles of CYP2C9 have been identified in various 

54,58,65-70study populations.
(https://www.pharmvar.org/gene/CYP2C9). 
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Cytochrome P450 CYP2C19 and genetic polymorphism
A CYP database
(http://www.cypalleles.ki.se/cyp2c19.htm) reports that 
there are currently over 34 CYP2C19 variant alleles, 
including unusual gene deletions. CYP2C19 is a highly 
polymorphic gene. It has been established that 
CYP2C19*35 is the most recent addition to the CYP2C19 

71gene, which is located on chromosome 10q24.  
(https://www.pharmvar.org/gene/CYP2C19). The 
frequencies of these variant alleles differ significantly 
across ancestrally diverse populations (CYP2C19 Allele 

72Frequency Table online. , CPIC: https://cpicpgx.org/). 
Functionally, alleles are categorized into different groups 
including normal function (e.g., CYP2C19*1), decreased 
function (e.g., CYP2C19*9 and CYP2C19*10), no function 
(e.g., CYP2C19*2 and CYP2C19*3), and increased 

72function (e.g., CYP2C19*17).  CYP2C19 is a well-known 
genetic polymorphism in the metabolism of the 

13anticonvulsant drug mephenytoin in humans  which has 
been attributed to defective CYP2C19 alleles. Individuals 
can be classified as EMs or PMs of this drug 
phenotypically. With the poor metabolizer (PM) 
phenotype representing 2-5% of Caucasians and 13-23% 
of Oriental groups, this genetic polymorphism exhibits 
severe interracial disparities. According to reports, Indian 
populations (North Indians (NI) 33.1%; South Indians (SI) 
36.8%) have a greater prevalence of the CYP2C19*2 allele 
than African (16%), Caucasian (13.3%), or Asian (28.4%) 

73groups.  This polymorphism affects the metabolism of 
some other clinically used drugs such as the antiulcer 

74 75,76 drug, omeprazole , certain barbiturates, and 
77-80antidepressants e.g., imipramine,  the antimalarial 

81proguanil,  and to a lesser extent the  -blocker 
82 83propranolol,  and the anxiolytic diazepam.  The 

enzyme responsible for this polymorphism has been 
14,15 identified as cytochrome P450 2C19 (CYP2C19).

Several polymorphisms of the CYP2C19 gene have been 
84identified and these produce an inactive enzyme.  The 

majority of poor metabolizer (PM) phenotypes are 
caused by two variant alleles, CYP2C19*2 and 
CYP2C19*3, which have G-to-A nucleotide substitutions 
in exon 5 and exon 4, respectively, resulting in abnormal 

85splicing sites and a premature stop codon, respectively.  
CYP2C19*3 is primarily present among Orientals, even 
though CYP2C19*2 seems to be the allele most 

86frequently related to the PM phenotype.  In the majority 
of populations that have been researched thus far, the 
CYP2C19*2 and CYP2C19*3 alleles account for more than 

8795% of the defective alleles.  Any of these heterozygous 
88,89alleles require a change in medication dosage.  The 

significant inter-subject variability in CG concentrations 
in humans may be explained by the crucial role played by 

the P450-isozyme (CYP2C19) in the polymorphic 
oxidation of mephenytoin. According to the research by 

81Ward et al. , this phenotype lacks or has a diminished 
antimalarial impact on PG. Additionally, omeprazole was 
found to increase the proguanil to cycloguanil metabolic 
ratio in urine in a prior study based on an analysis of these 

90ratios . This result is consistent with the inhibition of 
cycloguanil formation and not only confirms the 
interaction but also aids in identifying its potential 
mechanism and predictors. The biotransformation of 
proguanil into cycloguanil, which is known to be 

74,91-93metabolized by both CYP2C19 and CYP3A4.  was 
likewise found to be inhibited by omeprazole in vitro and 
in vivo. In patients with the CYP2C19 extensive 
metabolizer phenotype, the clinical implications of the 
reduction in cycloguanil production in the presence of 
omeprazole suggest that protection against malaria may 
be lowered when omeprazole and proguanil are 
combined. Additionally, CYP2C19 breaks down 
endogenous arachidonic acid to create epoxyeicosanoid 
acids, which have a role in inflammation and vascular 
tone. Consideration may be given to CYP2C19 as a new 
candidate gene for cardiovascular risks brought on by 
inflammation because of the correlation between the 
concentration of inflammatory markers and the 

94CYP2C19*2 polymorphism.  Additionally, it was 
discovered that there are significant genetic and 
phenotypic variations in plasma levels of proton-pump 
inhibitors, which are mirrored in changes in gastric pH 

95brought on by the drugs.  As a result, the healing rate for 
both stomach and duodenal ulcers displays a CYP2C19 
gene dose effect, and the cure rate for Helicobacter pylori 
infection when a proton-pump inhibitor and amoxicillin 

96,97 are taken is dependent on the CYP2C19 genotype.
Clopidogrel, an antiplatelet prodrug, is bioactivated by 
the enzyme CYP2C19, and common CYP2C19 loss-of-
function alleles are linked to harmful cardiovascular 

98events.  In linkage disequilibrium with CYP2C19*17, the 
loss-of-function allele CYP2C19*4 was also discovered. 
When analysing CYP2C19*17, this important haplotype, 
known as CYP2C19*4B, changes how CYP2C19 
genotyping is interpreted. Furthermore, the prevalence 
of extensive metabolizers decreased from 70% to 40% 
because of genotyping CYP2C19*17, and 30% were 

98reclassified as ultrarapid metabolizers.  The three 
cytochrome P450 enzymes with the closest ties to clinical 
applications through pharmacogenetic testing are 
CYP2D6, CYP2C9, and CYP2C19. The poor metabolizer 
phenotype of CYP2C19 is thought to have reduced 
clearance for some medications, which could lengthen or 

99,100intensify the pharmacological impact.  As a result, 
people with poor drug metabolizers might only need 

β
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Figure 1. Metabolizer status, and influence on drug dosing in genetic variability studies. (Adapted from 22)

Pharmacogenetics and drug metabolism 

83smaller doses of medications like diazepam.  Poor 
metabolizer and extensive metabolizer phenotypes in 
the case of proguanil may have different side effects or 

101toxicity profiles.  Figure 1 (adapted) shows metabolizer 
status, and influence on drug dosing in studies of genetic 

20variability.  This information is provided in accordance 
with the National Academy of Clinical Biochemistry's 
(NACB) Laboratory Medicine Practice Guidelines. The 
four phenotypic categories of ultra-rapid, extensive, 
moderate, and poor metabolizers have previously been 

20used to categorize this heterogeneity.  However, the 

CYP2C19 Genotype or (Diplotype)-Phenotype Table 
online can be consulted for a comprehensive list. The 
CYP2C19 Allele Functionality Table and the CYP2C19 
Allele Frequency Table online can also be consulted for 
allele functions and population-specific allele and 

72,102phenotype frequencies,  respectively, for specific 
C Y P 2 C 1 9  g e n e t i c  t e s t  i n t e r p r e t a t i o n  
(PharmVar.https://www. pharmvar.org/gene/CYP2C8). 
Inhibitors of CYP2C19 include fluoxetine and 
ketoconazole.
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DISCUSSION

Cytochrome P450 CYP2D6 and genetic polymorphism 
CYP2D6 is a key enzyme for drug bioactivation and 
excretion, whose activity is primarily controlled by 

103genetic variation.  It has been demonstrated that the 
activity of CYP2D6, also known as debrisoquine 
hydroxylase, is highly polymorphic and affects the 
pharmacokinetics and pharmacodynamics of several 
drugs. There are approximately 163 variant alleles known 
( C Y P 2 D 6 * 1  t o  C Y P 2 D 6 * 1 5 ;  C Y P 2 D 6 * 1 7  t o  

1 0 4C Y P 2 D 6 * 1 6 3 ) .  ( G e n e  I D :  C Y P 2 D 6  @  
https://www.pharmvar.org). A test for big gene 
deletions/duplications, such as a long PCR or multiplex 
ligation-dependent probe amplification (MLPA), is 
advised to identify the CYP2D6 genotype and should be 
carried out concurrently with a test for single-nucleotide 

17variations.  The diversity of CYP2D6 substrates includes 
medications for the central nervous system (CNS), the 
heart, analgesics, and hormones such as tamoxifen, 
tricyclic antidepressants, neurotransmitter reuptake 
inhibitors, neuroleptics, and neurotransmitter reuptake 

105-111 inhibitors. Additionally, CYP2D6 metabolizes other 
drugs such as perhexiline and phenformin and some 
environmental toxicants. Most preferred substrates 
include an alkyl or aryl amine. CYP2D6 was the first 

112genetic polymorphism to be identified.  This enzyme is 
important in the clearance of numerous drugs, and its 

113ability to do so can vary by 200-fold.  There are several 
potentials for drug-drug, drug-host, and drug-
environment interactions for CYP2D6 because its' activity 
is influenced by the host's genetic makeup and 
environmental/medicinal exposures. More and more 
experts in the field are realizing the significance of the 
CYP2D6 genotype in (a) assessing pharmacological 
efficacy, (b) determining the likelihood of adverse drug 
reactions, and (c) creating patient-specific dose 

114,115levels.  A few genetic variants that underpin the 
CYP2D6 metabolizer phenotypes of poor, moderate, 
extensive, and ultrarapid abilities have been identified by 
gene probe research. The PM group has the *3, *4, *5, or 
*6 alleles, all of which code for a protein that has 
decreased or null CYP2D6 activity. The EM group carries 

116 the wild-type (*1) or active (*2) variant alleles. In 
northern Europeans, gene duplication is relatively 
uncommon, although it can happen in as many as 29% of 
people with north-eastern African ancestry. Carriers of 
two non-functional alleles for CYP2D6 and CYP2C19 are 
referred to as poor metabolizers because they have a 
highly decreased ability to metabolize medications that 
are substrates for these enzymes. Additionally, for 2D6 
and 2C19, groups of various racial origin exhibit 

significantly varying prevalence of loss of functional 
alleles or alleles encoding for enzymes with decreased 

117 activity. Caucasians (5 to 10 %) have a poor ability to 
metabolize (homozygous for null variants), as do 
Southeast Asians (1-2 %) which in turn disposes them to 
the risk of compromised metabolism or adverse drug 
reactions when prescribed with medications that are 
substrates of CYP2D6. Certain alleles have equally been 

118discovered only in particular racial/ethnic groups,  as 
reported for CYP2D6*17 which has lower activity, in 

119Black Africans,  while CYP2D6*10 (which similarly 
confers reduced activity) is widespread among Southeast 

116Asians but not among other populations.  Around 25% 
of currently given medications, such as different 
antidepressants, neuroleptics, beta-blockers, opioids, 
antiemetics, and antiarrhythmics, are metabolized by 
CYP2D6, this highly polymorphic pharmacogene. As a 
result of the high plasma concentration of the affected 
drug in patients with poor metabolism and the resulting 
increased risk of adverse reactions, as well as the 
consequently low plasma concentration of the affected 

37drug,  in patients with ultrarapid metabolism, CYP2D6 
polymorphisms are clinically significant. Selective 
serotonin reuptake inhibitors (SSRIs), such as fluoxetine, 
paroxetine, and fluvoxamine, are CYP2D6 inhibitors in 
addition to quinidine. Codeine cannot be metabolized to 
morphine when given to a patient taking any of these 
medications, which prevents it from having any analgesic 

113effects.  Due to a lack of the active opiate moiety, those 
with CYP2D6 deficiencies may not get pain relief from 
codeine, while people with faster metabolism may have 
more frequent peaks of the active opiate with 

120 accompanying side effects. Various studies using 
d e b r i s o q u i n e ,  m e t o p ro l o l ,  s p a r t e i n e ,  a n d  
dextromethorphan as CYP2D6 substrates have 
investigated the prevalence of CYP2D6 poor 
metabolizers in the African population including African-

121 122 123-125 American children  Ghanaians,  Nigerians,
southern Africans (Burundians,126 Barakwena 

127 128 129Bushmen,  Venda, , Zimbabweans, ) as reviewed 
130by Bradford and Kirlin.   An investigation into the 

frequent distribution of ultrarapid metabolizers of 
debrisoquine in an Ethiopian population has also been 

131documented,  as well as CYP2D6 genotype predictions 
of plasma concentrations of tamoxifen metabolites in 

132Ethiopian breast cancer patients.

Genetic diversity of African populations
The genetic diversity in African populations has been 

133researched and reviewed in published literature.  In 
their review, they concluded that CYP polymorphisms 
clearly demonstrated and confirmed that genetic 
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variation is greater in African populations than in Asian 
and Caucasian populations. Because genetic variability in 
genes encoding drug-metabolizing enzymes may play a 
role in the widespread reporting of adverse drug 
reactions across Africa, the African continent cannot be 
treated as a homogenous, single entity in drug research 
and development. Neither can African American 
populations stand in as an adequate proxy for 

 133pharmacogenetic differences across Africa. Their 
review also indicated that population genetic studies 
have been done in Benin republic, Democratic Republic of 
Congo, Kenya, North Sudan, Tanzania, and Uganda 

133amongst others.

Techniques in genetic polymorphism

Phenotyping

Principle of phenotyping
Based on the injection of a probe drug that is metabolized 
by this enzyme to a metabolite that can be identified in 
urine, cytochrome P450 expression in patients is 

134phenotyped.  Hence, phenotyping has been done using 
both urine and plasma concentrations of drugs and their 
metabolites. The basic idea is to first compute the 
substrate's urine or plasma concentrations before 
calculating the metabolic ratio between the parent 
medication and its metabolite. Dextromethorphan, 
sparteine, and debrisoquine have all been used as 
phenotyping probe medicines to measure CYP2D6 
activity. The CYP2C19 substrate, S-mephenytoin, was 
originally employed to phenotype individuals for 
CYP2C19 activity. Due to adverse side effects of S-

135mephenytoin,  proguanil (PG) has been used as an 
alternative and safer CYP2C19 probe drug for 

81 136 phenotyping purposes in Caucasians,  Thais,
137 138 139,140 Vietnamese,  Turks,  and Tanzanians,

141 142,143Kenyans,  Nigerians, , etc. with comparable results 
to those obtained from mephenytoin. This is also a result 
of the challenges in administering mephenytoin and 
measuring its oxidative metabolite in urine. Since 
proguanil and omeprazole are substrates of the CYP2C19 
subtype that also metabolizes mephenytoin and that 
their metabolism co-segregates with that of 
mephenytoin, proguanil might theoretically also 
substitute mephenytoin for phenotyping. Additionally, 
due to its use as an antimalarial chemoprophylactic, 
proguanil is more widely available throughout Africa, 
Asia, etc. In numerous population studies, the ratio of PG 
to CG content in urine has been utilized as an indicator of 

82,91inter-individual variability.  According to these 
studies, the population distribution in this area is 

significantly skewed, with a small percentage of people 
producing tiny amounts of CG and a consequently large 
urinary ratio. The rate and extent of PG to CG metabolism 
have been attributed as reasons for the variability in the 
PG/CG ratio and individuals have been characterized as 
extensive (PG/CG ratio < 10) or poor (PG/CG ratio > 10) 

91metabolizers of PG.  The ability of a drug to 
competitively inhibit the oxidation, and to implicate the 
matching isoenzyme in the metabolism of the specific 
drug results in a deficiency in a particular enzyme when 
more of the parent drug and less of the metabolite are 

91removed.  Therefore, mephenytoin, omeprazole, and 
proguanil are probe drugs for CYP2C19 phenotyping.

HPLC in phenotyping
144 142,143 Methods for genotyping and phenotyping can be 

used to identify polymorphisms. The process of 
phenotyping involves giving probe medications and then 
measuring the metabolic ratio. On the other hand, DNA 
must be extracted to do genotyping. The linearity, 
accuracy, precision, sensitivity, and specificity of the 
chromatographic method, HPLC, make it the optimum 
approach for analyzing probe drugs and their 

145 .146  metabolites.  According to Kobayashi et al ,
omeprazole and its two major metabolites, 5-
hydroxyomeprazole, and omeprazole sulfone, were 
measured by HPLC. High-performance l iquid 
chromatography with UV detection followed by solid 
phase extraction is the most effective technique for 
proguanil analysis. 

Phenotyping
Omeprazole and its CYP2C19 produced 5-hydroxylated 
metabolite or proguanil and its active metabolite, 
cycloguanil, are measured in urine or plasma, 
respectively. In accordance with typical Phase 1 standard 
controlled circumstances, subjects are given a single 20 or 
40 mg omeprazole capsule or a 100 or 200 mg proguanil 
tablet. For PG, urine is collected up to 8 hours after 
medication administration, and it is subsequently 
a n a l y s e d  f o r  d r u g  a n d  m e t a b o l i t e  

81,82,91,136,141concentrations.  At three or four hours after 
the dose, one plasma sample can be taken to test for PG 
and metabolite. Next, the metabolic ratio is determined. 
Only one plasma sample is taken 2 or 3 hours after the 
omeprazole dose, or plasma can be taken from drug 

147intake up to 24 hours after dosing.  Proguanil and 
omeprazole assays are often carried out using HPLC and 

143,148-151 152,153 UV detection or LC-MS/MS assays.  Time-
dependent kinetics of omeprazole limits its use for 

154phenotyping during chronic therapy.  Also, the use of 
omeprazole in CYP2C19 phenotyping may be affected by 
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155 liver disease, age, and omeprazole therapy.

Genotyping

Principle of genotyping
The more frequently measured phenotype is the result of 
a person's drug metabolism, whereas the genome 
represents a person's complete gene structure. However, 
the phenotype is not always consistent with the genotype 
because it is the outcome of interactions between genetic 
make-up and environment. As genotype determination 
technology develops, more precautions will be needed to 
ensure accurate and reliable test findings. The laboratory 
shall adhere to the international standards set forth for 
m o l e c u l a r  p a t h o l o g y  t e s t i n g  w h e n  d o i n g  

156pharmacogenetic testing.  The extracted nucleic acid's 
quality and size criteria will therefore be determined by 
the pharmacogenetic test procedure. Larger sizes of 
nucleic acids with little degradation are needed for 
southern analysis. For various sources of nucleic acids, 
several enzymatic amplification techniques may be used 
for genotype characterization. Nucleic acid extraction 
procedures should adhere to molecular pathology 

157guidelines.  When doing pharmacogenetic testing in a 
laboratory, there are standard operating procedures and 
rules to follow, albeit these procedures will vary on the 
location of the laboratory. However, other international 
laboratories may accept and adhere to the College of 
American Pathology (CAP) criteria for the United States, 
or the ISO 15189 guidelines provided by the Technical 
Committee of the International Organization for 

158Standardization (http://global.ihs.com).  The answers 
to queries on the materials to be used to validate 
pharmacogenetic tests, the techniques used to prevent 
or detect assay interferences, and the material to be used 
for validation and lot-to-lot quality control will be 
provided by this guideline. https://www.aacc.org/-
/ m e d i a / F i l e s / S c i e n c e - a n d - P ra c t i c e / P ra c t i c e -

157Guidelines/Pharmacogenetics/) . Where epigenetic 
effects in patient populations may differ (for instance, 
DNA methylation may differ for each sex and/or patient 
age), the assay would need to be validated using a certain 
number of samples. Synthetic DNA controls, including 
plasmids, may be utilized in this scenario to check lot-to-
lot changes and daily quality assurance. These controls 
can detect all potential variants. Each pharmacogenetic 
test should be validated using samples whose genotype 
has been independently confirmed. The caliber of the 
supplied nucleic acids determines how well a full genome 
is amplified. Non-identical allelic representation for the 
entire genome amplified samples can be caused by 
reference DNA of poor quality. Therefore, it is necessary 

to establish the full genome amplified sample's capacity 
159to serve as a control before using it in the test.  Testing 

for proficiency is also necessary to guarantee and 
enhance the caliber of laboratory analysis. A PGx 
genotyping test's results may be restricted in their 
robustness and scope by the analysis's methodology. 
Therefore, it is risky to link a phenotype to a genotype 
when the genotype is to be linked to clinical metabolizer 
status in the absence of scientifically confirmed data. 
Nevertheless, despite numerous obstacles from the 
beginning of pharmacogenetics to the present and even 
in the future, understanding of the subject has 
significantly improved because of the integration and use 
of diverse technologies in molecular biology and other 

160 supporting science disciplines. Therefore, on the 
foundation of pharmacogenetic testing, the present, and 
the future would witness the conversion of discovered 
gene-drug interactions into therapeutic applications.

Data handling
The use of software logic enables the laboratory to flag 
potential flawed results to make advantage of If the test 
yields a patient's genotype combination that is 
statistically unlikely. By using this technology, the 
laboratory will be able to repeat the assay before 
informing the patient of the results, ensuring the validity 
of the test and their safety. Analytical platforms 
frequently utilize software to identify anomalous 
analytical results. It is also possible to manually examine 

157the software calculations periodically.

CONCLUSION
The profiling of SNP variations may replace the "one size 
fits all" approach to pharmaceutical prescription and 
enable patients to receive personalized prescriptions that 
are suited to their individual needs. Additional research in 
this area may help predict drug responses, improve 
individual prescribing, maximize treatment efficacy, 
produce better patient outcomes in the study population, 
and improve the therapeutic effectiveness and public 
health. It should also have implications in reducing the 
risk of side effects and toxicity. However, more research 
must be done before pharmacogenetics can be included 
in basic healthcare and prescription writing. Despite the 
high expectations, certain practical challenges will 
require focused work in the future, such as legislation and 
other changes that could influence a patient's unique 
response to a medicine. Pharmacogenetics (PGx) would 
therefore continue to play a major part in delivering the 
promises of personalized medicine: offering a medical 
treatment customized to the patient's genetic 
architecture by making progress in the research of 
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genetic determinants of drug reactions.
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