Phytochemical screening, proximate analysis and Chromatographic analysis of methanol leaf extract of Chromolaena odorata (L.) M.King & H.Rob. (Asteraceae)
Main Article Content
Abstract
Background: Chromolaena odorata is a scrambling perennial shrub with strong odour that have been reported to have polar phytochemicals.
Objectives: This study was carried out to evaluate the proximate parameter, phytochemical constituents and to identify the phytochemical constituents in C. odorata.
Methods: Proximate analysis and phytochemical screening were evaluated using established standard methods, while High Performance Liquid chromatography (HPLC) and gas chromatography-mass spectrometry were used for the chemical profiling of the plant.
Results: Phytochemical screening revealed alkaloids, flavonoids, glycosides, tannins, saponins, terpenoids and steroids. Proximate analysis showed moisture content 7.42±0.05 %, ash value 7.90±0.04 %, crude fibre content 19.98±0.02 %, crude fat content 23.40±0.02 %, crude protein content 2.30±0.02 % and carbohydrate content 47.20±0.03 %. Thirty eight compounds were identified, with 14 of which showed percentage area of 65.18 %, these compounds are Trimethylsilyl-3-methyl-4-[(trimethysilyl)oxy]benzoate (10.56 %), 1-Bromo-8-heptadecyne (9.58 %), 2-(2-tert-butylphenoxy)-N2-(2-nitrobenzylidene)-Acethydrazide (8.55 %), N,N-Dimethyl-
2-propyn-1-amine (6.36 %), 1,2-Dimethyl-3,5,5-tri(2-cyanoethyl)piperid-4-one (5.25 %), 3-ethenyl-2-(3-pentenylidene)-N-phenyl-[1.alpha.,2Z(E), 3.alpha.]-cyclopentanecarboxamide (4.84 %), Methylenepropanedinitrile (4.14 %), Imidazo(1,5-a)pyrimidine (4.10 %), 3-Methyl-3-penten-1-yne (3.37 %), 2-1-phenylethylidene-hydrazono-3-methyl-2,3-dihydrobenzothiazole (3.19 %), 1,4-Pentadien-3-one (3.18 %), Benzotriazol-1-carboxylic acid, 3-oxide, ethyl ester (3.17 %), 1-Benzylindole (3.10 %) and Pent-2-ynal (3.07 %).
Conclusion: This study shows that the leaf of Chromolaena odorata is a rich source of non-polar phytochemicals that are responsible for the observed activities.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Share
References
Vijayaraghavan K, Rajkumar J, Bukhari SN, Al Sayed B, Seyed MA (2017). Chromolaena odorata: A neglected weed with a wide spectrum of
pharmacological activities (Review). Mol. Med. Rep. 15, 1007-1016. https://doi.org/10.3892/mmr.2017.6133.
Phan TT, Wang L, See P, Grayer RJ, Chan SY, Lee ST (2001): Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: Implication for cutaneous wound healing. Biol. Pharm. Bull. 24:1373-1379..
Akinmoladun AC, Ibukun EO, Dan-Ologe IA (2007). Phytochemical constituents and antioxidant properties of extracts from the leaves of
Chromolaena odorata. Sci. Res. Essays. 2:191-4.
Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH (2014). Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 92:73-89.
Sirinthipaporn A, Jiraungkoorskul W (2017). Wound Healing Property Review of Siam Weed, Chromolaena odorata. Pharmacogn Rev. 11(21):35- 38.
Amazu LU, Omoregie P, Ajugwo AO, Ifezulike CC, Azikiwe CC (2013). Anticonvulsant potency of the leaf extract of Chromolaena odorata in rats. Unique Res. Journal Med. Med. Sci. 1:64-9.
Onkaramurthy M, Veerapur VP, Thippeswamy BS, Reddy TN, Rayappa H, Badami S (2013). Antidiabetic and anti-cataract effects of Chromolaena odorata Linn. in streptozotocin-induced diabetic rats. Journal Ethnopharmacol. 145:363-372.
Uhegbu FO, Imo C, Onwuegbuchulam CH (2016). Lipid lowering, hypoglycemic and antioxidant activities of Chromolaena odorata (L) and Ageratum conyzoides (L) ethanolic leaf extracts in albino rats. Journal Med. Plants Stud. 4:155-159.
Atindehou M, Lagnika L, Guérold B, Strub JM, Zhao M, Dorsselaer AV (2013). Isolation and identification of two anti-bacterial agents from Chromolaena odorata L. active against four diarrheal strains. Adv. Microbiol. 3:115-221.
Naidoo KK, Coopoosamy RM, Naidoo G (2011). Screening of Chromolaena odorata (L.) King and Robinson for anti-bacterial and anti-fungal
properties. Journal Med. Plant Res. 5:4859-4862.
Owoyele VB, Adediji JO, Soladoye AO (2005). Antiinflammatory activity of aqueous leaf extract of Chromolaena odorata. Inflammopharmacol. 13:479-484.
Phan TT, See P, Lee ST, Chan SY (2001). Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage. Burns. 27:319-27.
Melinda KP, Rathinam X, Marimuthu K, Diwakar A, Ramanathan S, Kathiresan S (2010). A comparative study on the antioxidant activity of methanolic leaf extracts of Ficus religiosa L and Chromolaena odorata (L.). King & Rabinson Cynodon dactylon (L.) Pers. and Tridax procumbens L. Asian Pac Journal Trop Med. 2010;3:348-50.
Akah PA (1990). Mechanism of hemostatic activity of Eupatorium odoratum. International Journal Crude Drug Res. 28:253-6.
Trease GE, Evans WC (1989). Pharmacognosy. 11th Edition, Bailliere Tindall, London, 45-50.
Sofowora LA (1993) Medicinal plants and traditional medicine in Africa. Spectrum Books Ltd., Ibadan, Harbone. 55-71.
AOAC (1990). Official methods of analysis.15th Edn., Association of Official Analytical Chemists. Washington DC. 20-26.
Odion EE, Ogboru RO, Ighene MO (2020). Identification of Compounds in Elaeis guineensis Fruits using GC-MS. Dhaka Univ. Journal Pharm. Sci. 19 (2): 153-159, DOI: https://doi.org/10.3329/dujps.v19i2.50631
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D'Alessandro AM (2022). Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Mol. 1. 27(11): 3566. doi: 10.3390/molecules27113566.
Uzor PF (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evid. Based Compl. Alter. Med. 12;2020:8749083. doi: 10.1155/2020/8749083.
Ogugofor MO, Njoku UO, Njoku OU, Batiha GE (2022). Phytochemical analysis and thrombolytic profiling of Costus afer stem fractions. Futur Journal Pharm Sci 8, 4.doi.org/10.1186/s43094- 021-00392-3.
Danlami U, Adebisi FA, David BM, Lawal DR, Galadanchi KM (2013). Proximate and phytochemical analyses of the hexane, ethyl
acetate and ethanol extracts of Chromolaena odorata (Linn.) Leaves. Short Communication. Asian Journal Pharm. Biol. Res. 34-35.
Etejere EO, Olayinka BU, Aderemi RO (2017). Phytochemical analysis of aqueous extract and proximate composition of Chromolaena odorata (L.) R.M. King and H. Robinson. Centrepoint Journal. 23, 2, 173-182.
Saohin W, Boonchoong P, Iamlikitkuakoon S, Jamnoiprom I, Mungdee W (2007). Effects of drying temperature and residual moisture content of FaTha-Li (Andrographis paniculata (Burm.f.) Nees) crude powder for capsule preparation. Thai Journal Pharm. Sci. 31, 28-35.
Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, Schorderet Weber S, Wenger A, WielandBerghausen S, Goebel T, Gauvry N, Pautrat F, Skripsky T, Froelich O, Komoin-Oka C, Westlund B, Sluder A, Mäser P (2008). A new class of anthelmintics effective against drug-resistant nematodes. Nature. 452:176-180. doi: 10.1038/nature06722.
PA. Barrett et al (1982). The efficacy of a novel compound, (E)-1-(4’-bromo-4-biphenylyl)-1-(4- chlorophenyl)-3-dimethylaminoprop-1-ene against Trypanosoma cruzi in mice.Experientia
Chiacchio U, Corsaro A, Iannazzo D (2003). Enantioselective syntheses and cytotoxicity of N, O-nucleosides. Journal Med Chem.
;46:3696e3702; (b)Coutouli-Argropoulou E, Pilanidou P. An entry to new isoxazoline analogues of dideoxynucleosides by bromonitrile oxide 1,3- dipolar cycloaddition. Tetrahedron Lett. 2003;44:3755e3758;
Merino P, Tejero T, Laguna M, Cerrada E, Moreno A, Lopez JA (2003). An investigation of the Lewis acid mediated 1,3-dipolar cycloaddition between Nbenzyl-C-(2-pyridyl)nitrone and allylic alcohol. Direct entry to isoxazolidinyl C-nucleosides. Org Biomol Chem. 1:2336e2342.
Piotrowska DG, Cieslak M, Krolewska K, Wroblewski AE (2011). Design, synthesis and cytotoxicity of a new Series of isoxazolidine based nucleoside analogues. Arch Pharm Chem Life Sci. 11:301e310.
Black GW(1965). A review of the pharmacology of halothane. Br J Anaesth. 1965 Sep;37(9):688-705.
Kobayashi H, Nakano T, Moss DE, Tadahiko S (1999). Effects of a central anticholinesterase, methanesulfonyl fluoride on the cerebral cholinergic system and behavior in mice: comparison with an organophosphate DDVP. Journal Health Sci. 45:191- 202.
Li P, Yin J, Xu WM, Wu J, He M, Hu DY, Yang S, Song BA (2013). Synthesis, antibacterial activities, and 3DQSAR of sulfone derivatives containing 1,3,4-oxadiazole moiety. Chem. Biol. Drug Des., 82. 546- 556.
Zhang JP, Li Q, Zhang C, Li P, Chen LJ, Wang YH, Ruan XH, Xiao W, Xue W (2018). Synthesis, antibacterial, and antiviral activities of novel penta-1,4-dien-3-one derivatives containing a benzotriazin-4(3H)-one moiety. Chem. Pap. 72. 1-10.
Wang X, Yin J, Shi L, Zhang GP, . Song Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)-one Eur. Journal Med. Chem., 77 (2014), pp. 65-74.
N. Paulino, NC. Rodrigues, PC. Pardi, JA. Suárez, RP. Santos, A. Scremin, C. Vogel, H. Feist, D. Michalik Evaluation of anti-inflammatory effect of synthetic 1,5-bis (4-acetoxy-3-methoxyphenyl)-1,4- pentadien-3-one, HB2 Bioorg. Med. Chem., 17 (2009), pp. 4290-4295.
XH. Gan, DY. Hu, P. Li, J. Wu, XW. Chen, W. Xue, BA. Song Design, synthesis, antiviral activity and threedimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety Pest Manage. Sci., 72 (2016), pp. 534-543.
Yu L, Gan XH, Zhou DG, He FC, Zeng S, Hu DY (2017). Synthesis and antiviral activity of novel 1,4- pentadien-3-one derivatives containing a 1,3,4- thiadiazole moiety. Mol. 22. 658-666.
Suarez JAQ, Rando DG, Santos RP, Gonçalves CP, Ferreira E, de Carvalho JE, Kohn L, Maria DA, Faiao Flores F, Michalik D, Marcucci MC, Vogel C (2010). New antitumoral agents I: In vitro anticancer activity and in vivo acute toxicity of synthetic 1,5-bis(4- hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one and derivatives. Bioorg. Med. Chem., 18. 6275-6281.
Wu S, Chen I, Chem C, Teng C, Wu T (1996). Structure and Synthesis of Simulansamide, a Platelet Aggregation Inhibitor from Zanthoxylum Simulans. Journal Chinse Chem Soc. 48.2, 195-198
Kumar KRR, Mallesha H, Basappa, Kanchugarakoppal S. Rangappa S (2003). Synthesis of novel isoxazolidine derivatives and studies for their antifungal properties . Euro Journal Med. Chem. 38.6. 613-619