Isolation and characterization of compounds from Argemone mexicana L. (Papaveraceae) with Peroxisome Proliferator-Activated Receptor (PPAR) Modulatory Effects Isolement et caractérisation de composés issus d'<i>Argemone mexicana</i> L. (Papaveraceaeayant des effets modulateurs sur le récepteur activé par les proliférateurs de peroxysomes (PPAR)
Main Article Content
Abstract
ENGLISH
Background: Argemone mexicana is used as emetic, demulcent, and laxative in folkloric medicine. This study aimed at isolating the chemical compounds and exploring the PPAR modulatory effects of isolated phytochemicals.
Objective: The study was carried out to isolate the chemical compounds and to explore the PPAR modulatory effects of the isolated phytochemicals.
Method: The leaves were collected, authenticated, and voucher specimen deposited at the University of Lagos herbarium, Nigeria. The leaves extracted with ethanol and extracts subjected to column chromatography on sephadex LH-20 and Silica gel. Structure lucidation were achieved by analyses of their 1-Dimensional and 2-Dimensional NMR. Reporter gene assay were performed on the extracts and isolated compounds for activation of PPARα and PPARγ.
Result: Nine compounds were isolated from the ethanol extract of the plant, and were proposed to be: 1(1-(β-d-ribofuranosyl)-1H-1,2,4-triazone), 2a((Z)-2-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene) acetic acid), 2b(cis-3,6-dihydroxy-a-ionone), 3((E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’- trimethylcyclohexyl) but-3-en-2-one), 4(Rhein), 5(Tamarexetin), 6(41-methoxylquercetin 3-β-D-glucoside), (Tamarixetin-3-O-β-D- robinoside) and 8(Palmitic acid). The extracts were found to activate PPARα with a fold induction of more than 2.0 over the vehicle control but a lower induction was observed with PPARα. The isolated compounds showed lower activation of PPARα and PPARγ.
Conclusion: Three flavonoids, palmitic acid, Rhein, a triazole and three substituted cyclohexane were isolated, while the extract showed PPARα activation, the isolated compounds did not. These effect might be due to the synergistic effect of the constituents, thus the extract has more promising effect.
FRENCH
Contexte: L'Argemone mexicana est utilisé comme émétique, émollient et laxatif en médecine traditionnelle. Cette étude visait à isoler les composés chimiques et à explorer les effets modulateurs des PPAR des composés phytochimiques isolés.
Méthode: Les feuilles ont été collectées, authentifiées et les spécimens de référence ont été déposés à l'herbier de l'Université de Lagos, au Nigéria. Les feuilles ont été extraites avec de l'éthanol et les extraits ont été soumis à une chromatographie en colonne sur du Sephadex LH-20 et de gel de silice. L'élucidation de la structure a été réalisée par des analyses de leur RMN 1 et 2 dimensions. Des tests de gènes rapporteurs ont été effectués sur les extraits et les composés isolés pour l'activation de PPARα et PPARγ.
Résultat: Neuf composés ont été isolés de l'extrait éthanolique de la plante et ont été proposés comme étant : 1 (1-(β-d-ribofuranosyl)-1H-1,2,4-triazone), 2a((Z)-2-(2,4-dihydroxy-2,6,6-triméthylcyclohexylidène) acide acétique), 2b(cis-3,6-dihydroxy-a-ionone), 3((E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’- triméthylcyclohexyl) but-3-en-2-one), 4(Rhein), 5(Tamarexétine), 6(41-méthoxyl q uercétine 3-β-D-glucoside), 7(Tamarixétine-3-O-β-D- robinoside) et 8(acide palmitique). Les extraits se sont avérés activer PPARα avec une induction de plus de 2,0 fois supérieure à celle du témoin du véhicule, mais une induction plus faible a été observée avec PPARα . Les composés isolés ont montré une activation plus faible de PPARα et PPARγ.
Conclusion: Trois flavonoïdes, l'acide palmitique, le Rhein, un triazole et trois cyclohexanes substitués ont été isolés. Si l'extrait a montré une activation de PPARα, les composés isolés n'en ont pas montré. Ces effets pourraient être dus à l'effet synergique des constituants, l'extrait ayant donc un effet plus prometteur.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Prasathkumar M, Anisha S, Dhrisya C, Becky R, and Sadhasivam S. (2021). Therapeutic and pharmacological efficacy of selective Indian
medicinal plants-a review. Phytomedicine Plus;1(2):100029.
2. Van Wyk AS, and Prinsloo G. (2018). Medicinal plant harvesting, sustainability and cultivation in South Africa. Biological Conservation 1;227:335-42.
3. World Health Organization (2022). Atlas of African health statistics 2022: health situation analysis of the WHO African Region-country profiles.
4. Team NCD. (2021) "Diabetes, a silent killer in Africa."
5. Balogun WO., Uloko AE., and Owolabi M. (2020). Atypical diabetes presentations in Sub-Saharan Africa classification puzzle and possible role of precision medicine. West African Journal of Medicine;37(5):574.
6. Rao S, and Ramakrishna A. (2020) Indian Medicinal Plants: Uses and Propagation Aspects. CRC Press;
7. Brahmachari G, Gorai D. and Roy R, (2013). Argemone mexicana: chemical and pharmacological aspects. Revista Brasileira de Farmacognosia, 23, pp.559-567.
8. Alamgir A N, and Alamgir A N. (2017). Pharmacognostical Botany: Classification of medicinal and aromatic plants (MAPs), botanical
taxonomy, morphology, and anatomy of drug plants. Therapeutic Use of Medicinal Plants and Their Extracts:1: Pharmacognosy.177-293.
9. Brahmachari G, Gorai D, & Roy R. (2013). Argemone mexicana: chemical and pharmacological aspects. Revista Brasileira de Farmacognosia, 23(3), 559-575.
10. Dash GK, & Murthy, PN. (2011). Evaluation of Argemone mexicana Linn. leaves for wound healing activity. Journal of Natural Products and Plant Resources, 1(1), 46-56).
11. Singh S, Verma M, Malhotra M, Prakash S, & Singh T D. (2016). Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line. Pharmaceutical Biology, 54(4), 740-745)
12. Rakesh S, Kumar A., & Roy A. (2023). Assessment of Secondary Metabolites, In-Vitro Antioxidant and Anti-Inflammatory Activity of root of Argemone mexicana L. ES Food & Agroforestry, 15, 1007.
13. Alam A, Khan AMAA, der Westhuizen L, Mpedi P, Sangwan NK, & Malik MS. (2021). Induction of apoptosis in A431 cells via ROS generation and p53- mediated pathway by chloroform fraction of Argemone mexicana (Papaveraceae). Natural Product Research, 3(1), 61-68.).
14. Rout SP, Kar DM, & Mandal PK. (2011). Hypoglycaemic activity of aerial parts of Argemone mexicana L. in experimental rat models.
International Journal of Pharmacy and Pharmaceutical Sciences, 3, 533-540
15. Sourabié TS, Koné HM, Nikiéma JB, Nacoulma OG, & Guissou IP. (2009). Evaluation of the antihepatotoxic effect of Argemone mexicana leaf extracts against CCl4-induced hepatic injury in rats. International Journal of Biological and Chemical Sciences, 3(6).
16. Simões-Pires CA, Diop EA, Ioset JR, et al. (2009). Bioguided fractionation of the antimalarial plant Argemone mexicana: isolation and quantification of active compounds from effective clinical batches. Planta Medica, 75(09), PD22).
17. Iyayi EA, Ohimain EI, and Ofongo RT. (2021) Qualitative and quantitative phytochemical screening of bitter and Neem leaves and their potential as antimicrobial growth promoter in poultry feed. European Journal of Medicinal Plants. 8;32(4):38-49.
18. Harborne JB. (1998). Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall; 1998.
19. Ibrahim EA, Wang M, Radwan MM, Wanas AS, Majumdar CG, Avula B, Wang YH, Khan IA, Chandra S, Lata H, and Hadad GM. (2019). Analysis of terpenes in Cannabis sativa L. using GC/MS: method development, validation, and application. Planta Medica ;85(05):431-8.
20. Yang MH, Avula B, Smillie T, Khan IA, and Khan SI (2013). Screening of medicinal plants for PPARγ and PPAR? activation and evaluation of their effects on glucose uptake and 3T3-L1 adipogenesis. Planta Medica.;79(12):1084-95.
21. Pathak R, Goel A, & Tripathi SC. (2021). Medicinal property and ethnopharmacological activities of Argemone mexicana: an overview. Annals of the Romanian Society for Cell Biology, 25(3), 1615-1641.
22. Xu Y, Zhao H, Yang J, Long X, Yuan L, and Chen Q (2023). Chemical Constituents of Angelica biserrata. Chemistry of Natural Compounds;59(5):946-7.
23. Wu Y, Su J, Guo RX, Ren TK, Zhang M, Dong M, Sauriol F, Shi Q, Gu Y, and Huo C. (2014). Two new non-taxoids from leaves of Taxus cuspidata. Chemistry of Natural Compounds;50:603-5.
24. Farina L, Villar V, Ares G, Carrau F, Dellacassa E, and Boido E. (2015). Volatile composition and aroma profile of Uruguayan Tannat wines. Food Research International.1;69:244-55.
25. Kassi E, Chinou I, Spilioti E, Tsiapara A, Graikou K, Karabournioti S, Manoussakis M, and Moutsatsou P. (2014). A monoterpene, unique component of thyme honeys, induces apoptosis in prostate cancer cells via inhibition of NF-KB activity and IL-6 secretion. Phytomedicine: 25;21(11):1483-9..
26. Tan ST, Wilkins AL, and Holland PT. (198). Isolation and X-Ray Crystal Structure of (E)-4-(r-1', t-2', c-4'-Trihydroxy-2', 6', 6'-trimethyl-cyclohexyl) but-3-en-2-one, a Constituent of New Zealand Thyme Honey. Australian Journal of Chemistry.;42(10):1799-804
27. Bisrat D, Dagne E, van Wyk BE, and Viljoen A. (2000). Chromones and anthrones from Aloe marlothii and Aloe rupestris. Phytochemistry: 1;55(8):949-52.
28. Abriyani E, Ibrahim S, and Darwis D. (2014). Isolation and elucidation structure of tamarixetin glycoside from bungo perak-perak (Begonia versicolar Irmsch) leaves. Journal of Chemical and Pharmaceutical Research: 22;6(8):24-7.
29. Yang J, and Liu RH (2009). Synergistic effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. Journal of Agricultural and Food Chemistry:23;57(18):8581-6.
30. Yadav DK, Bharitkar YP, Hazra A, Pal U, Verma S, Jana S, Singh UP, Maiti NC, Mondal NB, and Swarnakar S. (2017). Tamarixetin 3-O-β-d-glucopyranoside from azadirachta indica leaves: gastroprotective role through inhibition of matrix metalloproteinase-9 activity in mice. Journal of Natural Products:26;80(5):1347-53.
31. Hong F, Xu P, and Zhai Y. (2018). The opportunities and challenges of peroxisome proliferator-activated receptors ligands in clinical drug discovery and development. International Journal of Molecular Science: 27;19(8):2189.
32. Yamashita S, Masuda D, and Matsuzawa Y. (2020). Pemafibrate, a new selective PPARα modulator: drug concept and its clinical applications for dyslipidemia and metabolic diseases. Current Atherosclerosis Reports ;22:1-7.