Exacerbation of motor and non-motor symptoms of Parkinson disease by severe acute respiratory syndrome coronavirus-2 infection: Are there possible links?
Main Article Content
Abstract
Background: Parkinson's disease (PD) is an ageing and progressive neurological disorder characterized by both motor (tremors, bradykinesia, rigidity) and non-motor symptoms (depression, GI disturbance, and cognitive decline). COVID-19 is a highly infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) with symptoms ranging from mild to severe cardiopulmonary dysfunction. Moreover, COVID-19 infection causes excessive release of pro-inflammatory cytokines and gut microbiome alterations and has been reported to cause neurological complications, all of which are more prevalent in PD.
Objective: This review sought to shed some light on several unanswered questions with respect to the possibility of reciprocity in pathological relationship between COVID-19 and PD, including the central issue as to whether the virus enters the neurons, astrocyte, brain vascular cells or microglia.
Methods: The review was carried out through PubMed search, using the following terms: ‘COVID-19’, ‘Parkinson disease’, ‘coronavirus’, ‘Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)’, ‘gut disturbance’.
Results: There are no clear observations for human neuronal or astrocyte expression of angiotensin converting enzyme 2 (ACE2; main receptor for SARS-CoV2 viral entry) constitutively, but are induced by inflammation. Hence, the need for comparative study in both healthy and infected brains. Recent studies suggest that COVID-19 worsened both motor and non-motor symptoms in PD patients.
Conclusion: This finding showed the possibility of direct action of COVID-19 on motor/non-motor features of PD.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Share
References
Jankovic, J. (2008). Parkinson's disease: clinical features and diagnosis. Journal of Nneurology, Neurosurgery and Psychiatry, 79(4), pp.368-376.
Abramov, AY, Gegg, M, Grunewald, A., Wood, NW, Klein, C. and Schapira, AHV. (2011). Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One, 6(10), p.e25622.
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging, 24(2):197-211. doi: 10.1016/s0197-4580(02)00065-9
Olubodun-Obadun, TG, Ishola, IO, and Adeyemi, OO. (2022). Impact of environmental toxicants exposure on gut-brain axis in Parkinson disease. Drug Metabolism and Personalized Therapy, 37(4), 329- 336. https://doi.org/10.1515/dmpt-2021-0144
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. (2004). Stages in the development of Parkinson's disease-related pathology. Cell and Tissue Research, 318 (1): 121-134. https://doi.org/10. 1007/s00441-004-0956-9 3.
Garg D, Dhamija RK. (2020). The challenge of managing Parkinson's disease patients during the covid-19 pandemic. Annals of Indian Academy of Neurology, 23(Suppl 1):S24-S27. https://doi.org/10.4103/aian.AIAN_295_20
Rosen, B, Kurtishi, A, Vazquez-Jimenez, GR., and Møller, SG. (2021). The Intersection of Parkinson's Disease, Viral Infections, and COVID-19. Molecular Neurobiology, 58(9), 4477-4486. https://doi.org/10.1007/s12035-021-02408-8
Olubodun-Obadun, TG, Ishola, IO, and Adeyemi, OO. (2021). Potentials of autophagy enhancing natural products in the treatment of Parkinson disease. Drug Metabolism and Personalized Therapy, 37(2), 99-110. https://doi.org/10.1515/dmpt-2021-0128
Bassi, F, Arbia, G, and Falorsi, PD. (2021). Observed and estimated prevalence of Covid-19 in Italy: How to estimate the total cases from medical swabs data. The Science Of The Total Environment, 764, 142799. https://doi.org/10.1016/j.scitotenv.2020.142799
Paterson, RW., Brown, RL., Benjamin, L, Nortley, R., Wiethoff, S, Bharucha, T., Jayaseelan, DL, Kumar, G, Raftopoulos, RE., Zambreanu, L, Vivekanandam, V, Khoo, A., Geraldes, R, Chinthapalli, K, Boyd, E, Tuzlali, H., Price, G., Christofi, G., Morrow, J., McNamara, P, Zandi, MS. (2020). The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain: Neurology, 143(10), 3104-3120. https://doi.org/10.1093/brain/awaa240
Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GE. (2023). SARS-COV-2 infection and Parkinson's disease: Possible links and perspectives. Journal of Neuroscience Research, 2023 Jan 30. doi: 10.1002/jnr.25171.
Awogbindin IO, Ben-Azu B, Olusola BA, Akinluyi ET, Adeniyi PA, Di Paolo T, Tremblay MÈ. (2021). Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Frontiers in Cellular Neuroscience, 15:670298. doi: 10.3389/fncel.2021.670298.
Cilia, R., Bonvegna, S, Straccia, G, Andreasi, NG., Elia, AE., Romito, LM., Devigili, G., Cereda, E., and Eleopra, R. (2020). Effects of COVID-19 on Parkinson's Disease Clinical Features: A CommunityBased Case-Control Study. Movement disorders : Official Journal of the Movement Disorder Society, 35 (8), 1287-1292 https://doi.org/10.1002/mds.28170
Hawkes, CH., Del Tredici, K. and Braak, H., (2007). Parkinson's disease: a dual?hit hypothesis. Neuropathology and Applied Neurobiology, 33(6), pp.599-614
Khan AU, Akram M, Daniyal M, Zainab R. (2019). Awareness and current knowledge of Parkinson's disease: a neurodegenerative disorder. International Journal of Neuroscience, 129(1):55-93. doi: 10.1080/00207454.2018.1486837.
Surmeier DJ, Obeso JA, Halliday GM. (2017). Selective neuronal vulnerability in Parkinson disease. Nature Reviews of Neuroscience, 18(2):101-113
Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O. (2012). Non-motor symptoms in patients with Parkinson's disease - correlations with inflammatory cytokines in serum. PLoS ONE, 7 (10): e 47387. https://doi.org/10.1371/journal.pone.0047387
Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, Dicke A, Kusnekov A. (2010). The role of inflammatory cytokines in cognition and other nonmotor symptoms of Parkinson's disease. Psychosomatics, 51 (6):474-479.
Blauwendraat C, Nalls MA, Singleton AB. (2020). The genetic architecture of Parkinson's disease. Lancet Neurology, 19(2):170-178. doi: 10.1016/S1474-4422(19)30287-X.
Chang, D, Nalls, MA, Hallgrímsdóttir, IB., Hunkapiller, J, van der Brug, M, Cai, F., International Parkinson's Disease Genomics Consortium, 23andMe Research Team, Kerchner, GA, Ayalon, G, Bingol, B, Sheng, M, Hinds, D, Behrens, TW, Singleton, AB, Bhangale, TR, and Graham, RR. (2017). A meta-analysis of genomewide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 49 (10), 1511-1516. https://doi.org/10.1038/ng.3955
Emamzadeh FN, Surguchov A. (2018). Parkinson's Disease: Biomarkers, Treatment, and Risk Factors. Frontiers of Neuroscience, 12:612. doi: 10.3389/fnins.2018.00612.
Elbaz A, Tranchant C. (2007). Epidemiologic studies of environmental exposures in Parkinson's disease. Journal of Neurological Science, 262(1-2):37-44. doi: 10.1016/j.jns.2007.06.024
Montgomery EB Jr. (1995). Heavy metals and the etiology of Parkinson's disease and other movement disorders. Toxicology, 97 (1-3): 3-9. https://doi.org/10.1016/0300-483x(94)02962-t
Schapira, AHV, Chaudhuri, KR, Jenner, P. (2017). Nonmotor features of Parkinson disease. Nature reviews. Neuroscience, 18, 509.
Palma, JA, Kaufmann, H. (2018). Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Movement disorders: Official Journal of the Movement Disorder Society, 33, 372-390.
Olanow, CW, Stern, MB, and Sethi, K. (2009). The scientific and clinical basis for the treatment of Parkinson disease. Neurology, 21 Suppl. 4), S1-S136
Marrinan S, Emmanuel AV, Burn DJ. (2014). Delayed gastric emptying in Parkinson's disease. Movement Disorders, (1):23-32. doi: 10.1002/mds.25708
Müller T. (2002). Drug treatment of non-motor symptoms in Parkinson's disease. Expert Opinion in Pharmacotherapy. 3 (4): 38 1-8. doi: 10.1517/14656566.3.4.381.
Vadalà M, Vallelunga A, Palmieri L, Palmieri B, Morales-Medina JC, Iannitti T. (2015). Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease. Behavioural and Brain Functions,11:26. doi: 10.1186/s12993-015-0070-z.
Cenci MA, Ohlin KE, Odin P. (2011). Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson's disease. CNS Neurological Disorders Drug Targets, 10(6):670-84. doi: 10.2174/187152711797247885. PMID: 21838677.
Malik A, Ahmed, S., Shinde, M., Almermesh, MHS, Alghamdi, S., Hussain, A, & Anwar, S. (2022). The impact of COVID-19 On Comorbidities: A Review Of Recent Updates For Combating It. Saudi Journal of Biological Sciences, 29(5), 3586-3599. https://doi.org/10.1016/j.sjbs.2022.02.006
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. New England
Journal of Medicine. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032.
Vardhana, SA. and Wolchok, JD. (2020). The many faces of the anti-COVID immune response. Journal of Experimental Medicine, 217, e20200678
Olajide OA, Iwuanyanwu VU, Adegbola OD, AlHindawi AA. SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. Molecular Neurobiology. 2022 Jan;59(1):445-458. doi: 10.1007/s12035-021-02593-6.
Hirawat, R., Saifi, MA., and Godugu, C. (2021). Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sciences, 2021: 267, 118923. https://doi.org/10.1016/j.lfs.2020.118923
Wu Y, Xu X, Chen X, Duan J, Hashimoto K, Yang L, Liu C, Yang C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behaviour and Immunity 87 (2020) 18-22
Amruta, N., Chastain, WH., Paz, M., Solch, RJ., Murray-Brown, IC., Befeler, JB., Gressett, TE., Longo, MT., Engler-Chiurazzi, EB., and Bix, G. (2021). SARSCoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine & Growth Factor Reviews, 58, 1-15. https://doi.org/10.1016/j.cytogfr.2021.02.002
Baig AM, Khaleeq A, Ali U, Syeda H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms, ACS Chemical Neuroscience, 11 (7) (2020) 995-998.
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. (2008). Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of Virology, 82 (15) 7264-7275.
Shahbazi, F, Solgi, M, and Khazaei, S. (2020). Predisposing risk factors for COVID-19 infection: A case-control study. Caspian Journal of Internal M edicine, 2020: 11 (Suppl 1), 495-500. https://doi.org/10.22088/cjim.11.0.495
Rashedi, J., Mahdavi Poor, B., Asgharzadeh, V., Pourostadi, M., Samadi Kafil, H., Vegari, A., TayebiKhosroshahi, H., and Asgharzadeh, M. (2020). Risk Factors for COVID-19. Le Infezioni In Medicina, 2020: 28(4), 469-474.
Dabke, K., Hendrick, G. and Devkota, S. (2019). The gut microbiome and metabolic syndrome. Journal of Clinical Investigation, 2019: 129, 4050-4057.
Collins, J., Borojevic, R., Verdu, EF., Huizinga, JD. and Ratcliffe, EM. (2014). Intestinal microbiota influence the early postnatal development of the enteric nervous system. NeurogastroenterologyMotility, 26, 98-107.
Sampson, TR., Debelius, JW., Thron, T., Janssen, S, Shastri, GG., Ilhan, ZE., Challis, C., Schretter, CE., Rocha, S, Gradinaru, V, Chesselet, MF., Keshavarzian, A, Shannon, KM., Krajmalnik-Brown, R., WittungStafshede, P, Knight, R., and Mazmanian, SK. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 167 (6), 1469-1480. e 12.
https://doi.org/10.1016/j.cell.2016.11.018
Morais LH, Schreiber HL 4th, Mazmanian SK. (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews of Microbiology, 2021;19(4):241-255.
Karst SM. (2016). The infuence of commensal bacteria on infection with enteric viruses. Nature Reviews of Microbiology, 14(4):197-204.
Dhar D, Mohanty A. (2020). Gut microbiota and Covid-19-possible link and implications. Virus Research, 2020: 285:198018. https://doi.org/10.1016/j.virusres.2020.198018
Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP. (2008). Epidemiology of Parkinson's disease. Journal of Neurology, 2008: 255(5):18-32.
Brozzetti, L., Sacchetto, L., Cecchini, MP., Avesani, A. Perra, D, Bongianni, M, Portioli, C., Scupoli, M., Ghetti, B., Monaco, S., Buffelli, M., and Zanusso, G. (2020). Neurodegeneration-Associated Proteins in Human Olfactory Neurons Collected by Nasal Brushing. Frontiers in Neuroscience, 14, 145. https://doi.org/10.3389/fnins.2020.00145
Passarelli PC, Lopez MA, Mastandrea Bonaviri GN, GarciaGodoy F, D'Addona A. (2020). Taste and smell as chemosensory dysfunctions in COVID-19 infection. American Journal of Dentistry, 2020: 33(3):135-137
David P, Shoenfeld Y. The smell in COVID-19 infection: diagnostic opportunities. Israel Medical Association Journal: IMAJ, 2020: 7(22):335-33
Bouali-Benazzouz, R. and Benazzouz, A. (2021). Covid-19 infection and Parkinsonism: is there a link? Movement Disorders, 2021: 36, 1737-1743
Fearon, C. and Fasano, A. (2021). Parkinson's disease and the COVID-19 pandemic. Journal of Parkinsons Disease, 2021: 11, 431-444.
Han, D., Zheng, W, Wang, X., Chen, Z. (2020). Proteostasis of ?-Synuclein and its role in the pathogenesis of Parkinson's disease. Frontiers of Cellular Neuroscience, 2020: 14.
Rey, NL., Wesson, DW., Brundin, P. (2018). The olfactory bulb as the entry site for prionlike propagation in neurodegenerative diseases.
Neurobiology of Disease, 2018: 109, 226-248. https://doi.org/10.1016/j.nbd.2016.12.013.
Shalash, A., Helmy, A., Salama, M., Gaber, A., ElBelkimy, M., and Hamid, E. (2022). A 6-month longitudinal study on worsening of Parkinson's disease during the COVID-19 pandemic. NPJ Parkinson's disease, 8 (1), 111. doi.org/10.1038/s41531-022-00376-x
Oppo, V., Serra, G., Fenu, G., Murgia, D., Ricciardi, L., Melis, M., Morgante, F., and Cossu, G. (2020). Parkinson's Disease Symptoms Have a Distinct Impact on Caregivers' and Patients' Stress: A Study Assessing the Consequences of the COVID-19 Lockdown. Movement Disorders Clinical Practice, 7(7), 865-867.
De Micco R, Siciliano M, Sant'Elia V, Giordano A, Russo A, Tedeschi G, Tessitore A. (2021). Correlates of psychological distress in patients with Parkinson's disease during the COVID-19 outbreak. Movement Disorders Clinical Practice, 8(1):60e8.
Bouça-Machado, R., Rosário, A., Caldeira, D., Castro Caldas, A., Guerreiro, D., Venturelli, M., Tinazzi, M., Schena, F., and J Ferreira, J. (2019). Physical Activity, Exercise, and Physiotherapy in Parkinson's Disease: Defining the Concepts. Movement Disorders Clinical Practice, 7 (1), 7-15. https://doi.org/10.1002/mdc3.12849
Janiri, D, Petracca, M., Moccia, L., Tricoli, L., Piano, C, Bove, F., Imbimbo, I, Simonetti, A., Di Nicola, M., Sani, G, Calabresi, P, and Bentivoglio, AR. (2020). COVID-19 Pandemic and Psychiatric Symptoms: The Impact on Parkinson's Disease in the Elderly. Frontiers in
Psychiatry, 11, 581144. https://doi.org/10.3389/fpsyt.2020.581144.
Avan der Heide, MJ. Meinders, BR. Bloem, RC. (2020). Helmich, The impact of the COVID-19 pandemic on psychological distress, physical activity, and symptom severity in Parkinson's disease. Journal of Parkinsons Disease, 10 (4) (2020) 1355-1364.
Guo D, Han B, Lu L, Lv C, Fang X, Zhang Z, Liu Z, Wang X. (2020). Influence of the COVID-19 pandemic on quality of life of patients with
Parkinson's disease. Parkinson's Disease, 2020 (2020), 1216568.
Brooks, SK, Weston, D, Greenberg, N. (2021). Social and psychological impact of the COVID-19 pandemic on people with Parkinson's disease: a scoping review. Public Health, 77-86.
Schirinzi, T, Cerroni, R, Di Lazzaro, G, Liguori, C, Scalise, S, Bovenzi, R, Conti, M., Garasto, E., Mercuri, NB., Pierantozzi, M, Pisani, A., and Stefani, A. (2020).Self-reported needs of patients with Parkinson's disease during COVID-19 emergency in Italy. Neurological Sciences, 41(6), 1373-1375.
Brown, EG., Chahine, LM., Goldman, SM., Korell, M., Mann, E, Kinel, DR., Arnedo, V., Marek, KL., & Tanner, CM. (2020). The Effect of the COVID-19 Pandemic on People with Parkinson's Disease. Journal of Parkinson's Disease, 10(4), 1365-1377.
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England), 395(10223), 507-513.
Cilia, R., Bonvegna, S., Straccia, G., Andreasi, NG., Elia, AE., Romito, LM., Devigili, G., Cereda, E., & Eleopra, R. (2020). Effects of COVID-19 on Parkinson's Disease Clinical Features: A CommunityBased Case-Control Study. Movement disorders: Official Journal of the Movement Disorder Society, 3 5 ( 8 ) , 1 2 8 7 - 1 2 9 2 . https://doi.org/10.1002/mds.28170
Zhang Q, Schultz JL, Aldridge GM, Simmering JE, Narayanan NS. Coronavirus disease 2019 case fatality and Parkinson's disease, Movement Disorders, 35 (11) (2020) 1914-1915.
Fasano, A., Elia, AE., Dallocchio, C., Canesi, M., Alimonti, D., Sorbera, C., Alonso-Canovas, A., & Pezzoli, G. (2020). Predictors of COVID-19 outcome in Parkinson's disease. Parkinsonism and Related Disorders, 78,134-137.